# Mental Math and Computational Fluency 



Deep Run Elementary

## A Tale of a Dog \& Two Bears



## The Importance of Mental Math

- Built on patterns and relationships, not rote procedures


## The Importance of Mental Math

- Built on patterns and relationships, not rote procedures

$$
\begin{aligned}
& 26+57 \\
& 25+58 \\
& 24+59 \\
& 23+60
\end{aligned}
$$

## The Importance of Mental Math

- Built on patterns and relationships, not rote procedures

$$
\begin{gathered}
3+4+7 \longrightarrow \begin{array}{c}
(3+7)=10 \\
10+4=14 \\
\\
23+17 \\
3+7=10 \\
10+10+20=40
\end{array}
\end{gathered}
$$

## The Importance of Mental Math

- Built on patterns and relationships, not rote procedures

$$
\begin{array}{ll}
17 \times 32 & 6.25 \times 400 \\
34 \times 16 & 62.5 \times 40 \\
68 \times 8 & 625 \times 4 \\
136 \times 4 & \\
272 \times 2 &
\end{array}
$$

## The Importance of Mental Math

- Provides a way to evaluate answers for reasonableness

$$
78 \times 59=?
$$

|  | $\stackrel{4}{7}$ |
| :---: | :---: |
| 78 | 78 |
| $\times 59$ | $\times 59$ |
| $422 \leftarrow$ | 702 |
|  | +390 |
|  | 1,092 |

$$
\begin{gathered}
78 \times 59=? \\
\downarrow \\
\approx 80 \approx 60 \\
78 \times 59=? \\
\approx 80 \times 60=4,800 \\
78 \times 59 \approx 4,800
\end{gathered}
$$

## The Importance of Mental Math

- Reflects the kind of math adults do on a daily basis



## The Importance of Mental Math

- Can be "the easy way"



## Doing Math the Easy Way?

## Let's take a look at a couple problems:

$1^{\text {st }} / 2^{\text {nd }}$ grades

$$
14-6=
$$

$4^{\text {th }} / 5$ th grades
$600 \times 100=$

- How would you solve these problems?
- How do you think a child would solve these problems?


## Traditional Algorithm: The Easy Way?

## $14-6=$



$$
\begin{aligned}
& 14-6= \\
& 6+8=14
\end{aligned}
$$


${ }^{0}{ }^{1} 4$
$\begin{array}{r}6 \\ -\quad 6 \\ \hline 08\end{array}$


$$
14-6=
$$

$$
4-4)-2=
$$

$(14-4)-2=$

$$
10-2=8
$$

## Traditional Algorithm: The Easy Way?

## $600 \times 100=$

600
600
$\times 1000$
0000 60000
$+60,000$

$600 \times 100=$ $\qquad$
$600 \times 10=6,000$
$600 \times 100=$
$600 \times 10 \times 10=$
$6,000 \times 10=\underline{60,000}$

$600 \times 100=$
へ』
6,000
60,000

## Talking Numbers: Subtraction

3rd Grade- Math Number Talk

Jeremiah Curtin Leadership Academy

## Talking Numbers: Division



## Mental Math and Fluency Expectations

| GRADE | END-OF-YEAR EXPECTATION | EXAMPLES |  |  |
| :---: | :--- | :--- | :--- | :--- |
| $K$ | fluently + and - within 5 | $4+1$ | $5-2$ | $3+2$ |

## Mental Math and Fluency Expectations

| GRADE | END-OF-YEAR EXPECTATION | EXAMPLES |  |  |
| :---: | :---: | :--- | :--- | :--- |
| $K$ | fluently + and - within 5 | $4+1$ | $5-2$ | $3+2$ |
| 1 | fluently + and - within 10 | $7-5$ | $4+3$ | $9-6$ |
|  | $\pm 10$ for any two-digit <br> number | $26+10$ | $84-10$ |  |

## Mental Math and Fluency Expectations

| GRADE | END-OF-YEAR EXPECTATION | EXAMPLES |  |
| :---: | :---: | :---: | :---: |
| K | fluently + and - within 5 | $4+15$ | $23+2$ |
| 1 | fluently + and - within 10 | $7-5$ | $39-6$ |
|  | $\pm 10$ for any two-digit number | $26+1084-10$ |  |
| 2 | know from memory all sums of two one-digit addends | $\begin{array}{ll} 6+7 & 8 \\ 2+7 & 9 \end{array}$ | $\begin{array}{ll} 3 & 7+8 \\ 5 & 4+9 \end{array}$ |
|  | $\pm 10$ and $\pm 100$ for any three-digit number | $\begin{array}{cc} 473-10 & 816+10 \\ 352-100 & 709+100 \end{array}$ |  |

## Mental Math and Fluency Expectations

| GRADE | END-OF-YEAR EXPECTATION | EXAMPLES |  |  |
| :---: | :---: | :---: | :---: | :---: |
| K | fluently + and - within 5 | $4+1$ | $5-2$ | $3+2$ |
| 1 | fluently + and - within 10 | 7-5 | $4+3$ | 9-6 |
|  | $\pm 10$ for any two-digit number | $26+10$ | 84-10 |  |
| 2 | know from memory all sums of two one-digit addends | $\begin{aligned} & 6+7 \\ & 2+7 \end{aligned}$ | $\begin{aligned} & 8+3 \\ & 9+5 \end{aligned}$ | $\begin{aligned} & 7+8 \\ & 4+9 \end{aligned}$ |
|  | $\pm 10$ and $\pm 100$ for any three-digit number | $\begin{array}{cc} 473-10 & 816+10 \\ 352-100 & 709+100 \end{array}$ |  |  |
| 3 | know from memory all products of one-digit factors | $\begin{aligned} & 4 \times 9 \\ & 7 \times 3 \end{aligned}$ | $\begin{aligned} & 8 \times 6 \\ & 2 \times 9 \end{aligned}$ | $\begin{aligned} & 5 \times 7 \\ & 4 \times 8 \end{aligned}$ |

## Computation Expectations by Grade

| GRADE | END-OF-YEAR EXPECTATION |
| :---: | :---: |
| K | - add and subtract within 10 |
| 1 | - add and subtract within 20 <br> - add within 100 <br> - subtract two-digit multiples of 10 |
| 2 | - add and subtract within 1,000 |
| 3 | - add and subtract within 1,000 <br> - multiply two one-digit factors <br> - multiply one-digit factors by a multiple of 10 |
| 4 | - add and subtract within 1,000,000 <br> - multiply: 1 by 4 and 2 by 2 <br> - divide: up 4 by 1 |
| 5 | - multiply multi-digit numbers • divide: up to 4 by 2 <br> - perform all operations on decimals |

## Working Together to Build Mathematical Thinkers

## The school's role...

- offer rich, purposeful mathematical experiences
- provide number strategy instruction \& practice


## The families' role...

- ask your child to show you what he or she has learned
- look for ways to apply the learning in real-life situations


## Our shared role...

- highlight and build on the students' strengths
- celebrate questions, mistakes, growth, effort, and struggle


## Websites

http://gregtangmath.com/ games.html


http://www.topmarks.co.uk/ maths-games/hit-the-button

## Greg Tang Books

## K-2 Primary

- Math-terpieces
- Math Fables


3-5 Intermediate

- Math Potatoes
- The Best of Times


## Greg Tang Books

## Peruse the books. <br> Choose one for your family.



## Fill out one of the book labels.

|This book belongs to
the $\qquad$ family
(family's last name)
children in grade(s) $\qquad$

Put it in the container.


